

PRINT ISSN 2278-8697

MATHEMATICAL SCIENCES INTERNATIONAL RESEARCH JOURNAL

Biannual Referred Journal SE Impact Factor 2.73

VOLUME 8

ISSUE 2 (2019)

imrfjournals.in Biannual Journal Peer Referred Journal Open Access - Print & Online Editors Dr.Ratnakar D B Dr.M Lellis Thivagar Dr.P.Vijaya Vani

IMRF OURNALS

REPRESENTATION OF LATTICES ON PRE A*-ALGEBRA

A. Satyanarayana

Lecturer in Mathematics, ANR College, Gudiwada, A.P., India.

U.Suryakumar

Lecturer in Mathematics, ANR College, Gudiwada, A.P., India.

V. Ramabrahmam

Lecturer in Mathematics, Sir CRR College, Eluru, A.P., India.

Received: Sep. 2019 Accepted: Oct. 2019 Published: Nov. 2019

Abstract: This paper analyzes the notion of lattice structure on Pre A*-algebra. It has been derived the corresponding properties of the Pre A*-lattice L. Furthermore, identified a congruence relation β_a on L and proved that the set of all congurences on L is a distributive Pre A*-Lattice. Also described an ideal on Pre A*-lattice L and shown that F(L) the set of all ideals of L is a distributive Pre A*-lattice under the set inclusion. Also introduced the notion of ideal congruence on Pre A*-lattice and derived its various significant properties.

Keywords: A*-Algebra, Pre-A*-Algebra, Boolean Algebra, Partially Ordered Set, Homomorphism.

AMS Subject Classification (2000): 06E05, 06E25, 06E99, 06B10.

Introduction: J.Venkateswara Rao (2000) introduced the concept Pre A*-algebra $(A, \land, \lor, (-)^*)$ analogous to C-algebra as a reduct of A*- algebra. Further A. Satyanarayana (2012) established the concept of Ideals, Semilattice structures and Ideal congruences on Pre A*-algebra. Boolean algebra depends on two element logic. C-algebra, Ada, A*- algebra and our Pre A*-algebra are regular extensions of Boolean logic to 3 truth values, where the third truth value stands for an undefined truth value. The Pre A*- algebra structure is denoted by $(A, \land, \lor, (-)^*)$ where A is non-empty set \land . \lor are binary operations and $(-)^*$ is a unary operation.

In this paper we identify for any subset L of a Pre A*-algebra, a Pre A*-lattice. We present various examples of Pre A*-lattices. We offer several properties of Pre A*-lattices. We define sub Pre A*-lattice, distributive Pre A*-lattices and homomorphism of Pre A*-lattices. We confer congruence relation β_a on L and prove that the set of all congurences of the form β_a forms a distributive Pre A*-Lattice . We also introduce the concept of Ideal, Ideal congruences on Pre A*-lattice and derived some important properties of these.

- 1. **Preliminaries:** In this section we concentrate on the algebraic structure of Pre A*-algebra and state some results which will be used in the later text.
- 1.1. **Definition**: An algebra $(A, \land, \lor, (-)^{\sim})$ where A is a non-empty set with $1, \land, \lor$ are binary operations and $(-)^{\sim}$ is a unary operation satisfying
- (a) $x = x \quad \forall x \in A$
- (b) $x \wedge x = x$, $\forall x \in A$
- (c) $x \wedge y = y \wedge x$, $\forall x, y \in A$
- (d) $(x \wedge y)^- = x^- \vee y^- \quad \forall x, y \in A$

(e)
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z, \quad \forall x, y, z \in A$$

(f)
$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z), \quad \forall x, y, z \in A$$

(g)
$$x \wedge y = x \wedge (x \vee y)$$
, $\forall x, y \in A$ is called a Pre A*-algebra.

1.2. Example: $3 = \{0, 1, 2\}$ with operations $\land, \lor, (-)$ defined below is a Pre A*-algebra.

	0		2	V	o	1	2	X	<i>x</i> :
_	0			0		1	2	o	1
,	0	1	2	1	1	1	2	1	o
2		2		2	2	2	2	2	2

1.3. Note: The elements 0, 1, 2 in the above example satisfy the following laws:

$$(a) 2 = 2$$

(b)
$$1 \land x = x$$
 for all $x \in 3$

(c)
$$o \lor x = x$$
 for all $x \in 3$

(d)
$$2 \wedge x = 2 \vee x = 2$$
 for all $x \in 3$.

1.4. Definition: Let A be a Pre A*-algebra. An element $x \in A$ is called a central element of A if $x \lor x\%1$ and the set $\{x \in A/x \lor x\%1\}$ of all central elements of A is called the centre of A and it is denoted by B (A).

1.5. Theorem: [6]: Let A be a Pre A*-algebra with 1, then B (A) is a Boolean algebra with the induced operations $\land, \lor, (-)$

2. Representation of Lattices On Pre A*-Algebra: In this section we define (for any subset L of a Pre A*-algebra) a Pre A*-lattice (L, \land , \lor). We give some examples of Pre A*-lattices. We give some properties of Pre A*-lattices. We define the congruence $\beta_a = \{(x,y) \in L \times L \mid a \lor x = a \lor y\}$ for any $a \in L$ and studied their properties. We also introduce the concept of Ideal, Ideal congruences on Pre A*-lattice and derived some important properties of these.

2.1. Definition: Let A be a Pre A*-algebra. A non-empty subset L of a Pre A*-algebra A in which for each pair of elements $a \in A$, $b \in B(A)$ in L has greatest lower bound $a \vee b$ exists in L. Such a defined set L in Pre A*-algebra is said to be Pre A*-lattice.

Now we give another type of definition other than that in 2.1. Definition by means of equations.

2.2. Definition: Let A be a Pre A*-algebra. A non-empty subset L of a Pre A*-algebra A, equipped with two binary operations meet (\land) and join (\lor) which assign to every pair $a \in A$, $b \in B(A)$ of the elements of uniquely

 $a \wedge b$ as well as element $a \vee b$ in L in such a way that the following axioms holds.

- (i) $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $\forall a, b, c \in L$ (associative)
- (ii) $a \wedge b = b \wedge a$, $\forall a, b \in L$ (commutative);
- (iii) $a \wedge (a \vee b) = a, \forall a, b \in L (absorption law)$

2.3. Theorem: Let A be a Pre A*-algebra. L is a subset of A Then (L, \wedge, \vee) is a Pre A*-lattice.

Proof: Since A is a Pre A*-algebra L is a subset of A.

We have $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $\forall a, b, c \in A \text{ by 1.2 (e)}$

 $a \wedge b = b \wedge a$, $\forall a, b \in A \text{ by 1.2 (c)}$ and $a \wedge a = a$, $\forall a \in A \text{ by 1.2 (b)}$

Therefore $a \wedge (b \wedge c) = (a \wedge b) \wedge c$, $\forall a, b, c \in L$, $a \wedge b = b \wedge a$, $\forall a, b \in L$

And $a \wedge a = a$, $\forall a \in L$. Hence (L, \wedge) is a semilattice.

Similarly we can prove (L, \vee) is a semilattice. And since in a Pre A*-algebra,

 $a \wedge (a \vee b) = a$, $\forall a \in A$, $b \in B(A)$. So, $a \wedge (a \vee b) = a$, $\forall a, b \in L$ (absorption law). Hence (L, \wedge, \vee) is a Pre A*-lattice.

Definition: Let A be a Pre A*-algebra and L is a distributive Pre A*-Lattice. Define for any $a \in L$, $\beta_a = \{(x, y) \in L \times L \mid a \vee x = a \vee y\}$

2.5. Lemma: Let L be a distributive Pre A*-Lattice. Then $\beta_a = \{(x,y) \in L \times L \mid a \lor x = a \lor y\}$ is a congruence relation on L .

2.6. Theorem: Let L be a distributive Pre A*-Lattice. Define $X = \{\beta_a \mid a \in L\}$ then (X,\subseteq) is a distributive Pre A*-Lattice.

Proof: Clearly $\beta_a \subseteq \beta_a$ for all $\beta_a \in X$, shows \subseteq is reflexive.

Let $\beta_a \subseteq \beta_b$ and $\beta_b \subseteq \beta_a$ implies that $\beta_a = \beta_b$. This \subseteq is anti-symmetric.

Let $\beta_a \subseteq \beta_b$ and $\beta_b \subseteq \beta_c$ then $\beta_a \subseteq \beta_c$, shows that \subseteq is transitive.

Hence (X,\subseteq) is a poset.

First we show that $\beta_a \cap \beta_b = \beta_a$

Let $(x, y) \in \beta_a \cap \beta_b$ then $a \lor x = a \lor y$ and $b \lor x = b \lor y$

Now $(a \wedge b) \vee x = (a \vee x) \wedge (b \vee x) = (a \vee y) \wedge (b \vee y) = (a \wedge b) \vee y$

This implies that $(x, y) \in \beta_{a-b}$. This shows that $\beta_a \cap \beta_b \subseteq \beta_{a-b}$.

On the other hand let $(x, y) \in \beta_{a > b}$ then $(a \wedge b) \vee x = (a \wedge b) \vee y$.

Now $a \lor x = (a \lor (a \land b)) \lor x$ (by absorption law)

 $= a \vee ((a \wedge b) \vee x)$

 $= a \vee ((a \wedge b) \vee y)$

 $=(a\vee(a\wedge b))\vee y$

 $= a \vee y$

This implies that $(x, y) \in \beta_a$, hence $\beta_{a \to b} \subseteq \beta_a$

Similarly we can prove that $eta_{a=b}\subseteqeta_b$ This implies that $eta_{a=b}\subseteqeta_a\capeta_b$

Hence $\beta_a \cap \beta_b = \beta_{a-b}$

Let $(r,s) \in \beta_a$ then $a \lor r = a \lor s \Rightarrow a \lor b \lor r = a \lor b \lor s \Rightarrow (r,s) \in \beta_{a \lor b}$.

Hence $\beta_a \subseteq \beta_{a \ b}$. Similarly $\beta_b \subseteq \beta_{a \ b}$. Thus $\beta_{a \ b}$ is an upper bound of $\{\beta_a, \beta_b\}$.

Let β_{ϵ} is an upper bound of $\{\beta_a, \beta_b\}$.

Let $(x, y) \in \beta_{a > b}$ then $(a \lor b) \lor x = (a \lor b) \lor y$

 $\Rightarrow a \lor (b \lor x) = a \lor (b \lor y) \Rightarrow (b \lor x, b \lor y) \in \beta_a \subseteq \beta_c$

 $\Rightarrow c \lor b \lor x = c \lor b \lor y \Rightarrow b \lor c \lor x = b \lor c \lor y \Rightarrow (c \lor x, c \lor y) \in \beta_b \subseteq \beta_c$

 $\Rightarrow c \lor c \lor x = c \lor c \lor y \Rightarrow c \lor x = c \lor y \Rightarrow (x, y) \in \beta_c$

Hence $\beta_{a,b} \subseteq \beta_c$.

Therefore Sup{ β_a , β_b } = $\beta_{a \circ b}$ i.e., $\beta_a \lor \beta_b = \beta_{a \circ b}$.

Hence X is a Pre A*-Lattice.

Since $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$, $\forall a, b, c \in L$ we have X is a distributive Pre A*-Lattice.

2-7. **Definition:** A nonempty subset I of a distributive Pre A*-Lattice L is said to be an ideal of L if the following body following hold.

(i) $a,b \in I \Rightarrow a \lor b \in I$

(ii) $a \in I \Rightarrow x \land a \in I$ for each $x \in L$

2.8. Theorem: Let L be a distributive Pre A*-Lattice. Then f(L) the set of all ideals of L is a distributive Pre A*-Lattice under the set inclusion.

Proof: Let $I, J \in F(L)$

Clearly II J is an ideal of L, and II $J = Inf\{I, J\}$ in the poset $(F(L), \subseteq)$.

Let H = {
$$\bigvee_{i=1}^{n} x_i / x_i \in IUJ$$
, n is a positive integer }

Let
$$x, y \in H$$
 implies that $x = \bigvee_{i=1}^{n} x_i$, $y = \bigvee_{i=1}^{n} y_i$ and hence $x \lor y = \bigvee_{k=1}^{n} t_k$ (each $t_i \in IUJ$)

Let
$$a \in L$$
 and $x \in H$. Then $a \land x = a \land (\bigvee_{i=1}^{n} x_i) = \bigvee_{i=1}^{n} (a \land x_i)$

Now $a \land x_i \in I \cup J$ (since if $x_i \in I$ then $a \land x_i \in I$ and if $x_i \in J$ then $a \land x_i \in J$)

Hence a $\land x \in H$. Therefore H is an ideal of L.

Clearly I, J are subsets of H.Let K be any ideal of L such that $I \subseteq K$, $J \subseteq K$.

Now let
$$x \in H \Rightarrow x = \bigvee_{i=1}^{n} x_i \Rightarrow x \in K(\text{ since } I, J \subseteq K \text{ and } K \text{ is an ideal})$$

Hence $H \subseteq K$. Therefore H is the smallest ideal containing I, J.

Therefore Sup{I, J} = H.i.e.,
$$I \lor J = \{ \bigvee_{i=1}^{n} x_i / x_i \in I \cup J, n \text{ is a positive integer } \}$$

Hence F(L) is a lattice under the set inclusion.

Let I, J,
$$K \in F(L)$$
. Clearly (II J) \vee (II K) \subseteq II (J \vee K)

Let $t \in II \ (J \lor K)$

Then
$$t = \bigvee_{i=1}^{n} x_i$$
, where $x_i \in JUK.Now\ t = t \land t = t \land (\bigvee_{i=1}^{n} x_i) = \bigvee_{i=1}^{n} (t \land x_i)$

Now $t \wedge x_i \in II$ Jor II K

Therefore $t \in (II J) \lor (II K)$

Hence II
$$(J \lor K) \subseteq (II \ J) \lor (II \ K)$$

Thus II $(J \vee K) = (II \ J) \vee (II \ K)$. Therefore F(L) is a distributive Pre A*-Lattice.

2.9. Definition: For any ideal I of a Pre A*-algebra A we define $\beta_1 = \{(x, y) / (x, y) \}$

$$a \lor x = a \lor y$$
 for some $a \in I$ }. That is $\beta_1 = \bigcup_{a \in I} \beta_a$

2.10. Theorem[6]: β_1 is a congruence on a Pre A*-algebra A for any ideal I of A.

2.11. Theorem[6]: For any ideals I and J of a Pre A*-algebra A the following hold.

$$\text{(1) } I \subseteq J \Rightarrow \beta_1 \subseteq \beta_1$$

(2)
$$\beta_1 I \beta_1 = \beta_{I1J}$$

(3)
$$\beta_1 \vee \beta_1 = \beta_{I \cup J}$$

2.12. Theorem: Let F(L) be the lattice of all ideals a Pre A*-Lattice L. Then

 $I \rightarrow \beta_1$ is homomorphism of the lattice F(L) into the lattice Con(L) of all congruences on L.

Proof: From 2.11. Theorem (2 and 3) it follows that $I \to \beta_1$ is lattice homomorphism of F(L) into the lattice Con(L).

2.13. Lemma: Let L be a distributive Pre A*-Lattice. Then $M_a = \{ a \lor x / x \in L \}$ is a sub algebra of Land it is a distributive lattice.

proof: Let $a \lor x$, $a \lor y \in M_o$

Then $a \lor (x \land y) = (a \lor x) \land (a \lor y) \in M_a$ Hence M_a is closed under \land

Also $a \lor (x \lor y) = (a \lor x) \lor (a \lor y) \in M_a$ Hence M_a is closed under \lor

Therefore M_a is a sub algebra of L. Since L is a distributive Pre A*-Lattice we have M_a is a distributive lattice.

2.14. Theorem: Let L be a distributive Pre A*-Lattice. Then the map $g_a: L \to M_a$ defined by $g_a(x) =$ $a \lor x$ is a homomorphism and $L \ / \ oldsymbol{eta}_a \cong M_a$.

Proof: Let $x, y \in L$. Then

$$g_a(x \lor y) = a \lor (x \lor y) = (a \lor x) \lor (a \lor y) = g_a(x) \lor g_a(y)$$
 and

$$g_a(x \wedge y) = a \vee (x \wedge y) = (a \vee x) \wedge (a \vee y) = g_a(x) \wedge g_a(y)$$

Therefore g_a is homomorphism.

For
$$a \lor x \in M_a$$
, $g_a(x) = a \lor x$

Hence g_a is onto.

Now ker
$$g_a = \{(x, y) / g_a(x) = g_a(y)\} = \{(x, y) / a \lor x = a \lor y\} = \beta_a$$

By fundamental theorem of homomorphism L / $\ker g_a \cong M_a$, which imply L / $\beta_a \cong M_a$.

2.15. Lemma: Let L be a distributive Pre A*-Lattice. Then $L_a = \{ a \land x / x \in L \}$ is a sub algebra of L and it is a distributive lattice.

2.16. Theorem: Let L is a distributive Pre A*-Lattice and $a \in L$. Then the mapping $f \to L_a \times M_a$ defined by $f(x) = (a \land x, a \lor x)$ for all $x \in L$ is an isomorphism.

Proof: Let $x, y \in L$.

$$f(x \wedge y) = (a \wedge (x \wedge y), a \vee (x \wedge y))$$

$$= ((a \wedge x) \wedge (a \wedge y), (a \vee x) \wedge (a \vee y)) = (a \wedge x, a \vee x) \wedge (a \wedge y, a \vee y)$$

$$= f(x) \wedge f(y)$$
 and

$$f(x \lor y) = (a \land (x \lor y), a \lor (x \lor y))$$

$$= ((a \land x) \lor (a \land y), (a \lor x) \lor (a \lor y)) = (a \land x, a \lor x) \lor (a \land y, a \lor y)$$

$$= f(x) \lor f(y)$$

Hence f is homomorphism

For
$$a \land x \in L_a$$
 and $a \lor x \in M_a$ where $x \in L$ such that $f(x) = (a \land x, a \lor x) \in L_a \times M_a$

Hence f is onto

Let
$$f(x) = f(y) \Rightarrow (a \land x, a \lor x) = (a \land y, a \lor y) \Rightarrow a \land x = a \land y \text{ and } a \lor x = a \lor y$$

 $\Rightarrow x = y$

Hence f is one – one. Therefore f is isomorphism.

References:

Birkoff G (1948): Lattice theory, American Mathematical Society, Colloquium Publications, Vol.25,

- Fernando Guzman and Craig C.Squir (1990): The Algebra of Conditional logic, Algebra Universalis, 27, 88-110.
- Koteswara Rao. P(1994): A*-Algebra, an If-Then-Else structures (Doctoral Thesis) Nagarjuna University, A.P., India.
- Venkateswara Rao. J (2000): On A*-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India.
- A. Satyanarayana, J. Venkateswara Rao, V. Ramabrahmam and U.Suryakumar,, "Ideal Congruences Fascinating on Pre A*-Algebra", Mathematical Sciences International Research Journal., Vol.1, No.1, 2012, (pp 81-89) ISSN 2278-8697.
- 6. Satyanarayana.A. (2012), Algebraic Study of Certain Classes of Pre A*-Algebras and C-Algebras (Doctoral Thesis), Nagarjuna University, A.P., India

...